Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(-h_{6}-2h_{5}-2/3h_{4}+2/3h_{3}+2h_{2}+h_{1}\) | \(g_{17}+3/4g_{6}+3/4g_{1}\) | \(g_{4}+g_{3}\) | \(g_{20}+g_{19}\) | \(g_{9}\) | \(g_{18}\) | \(g_{16}\) | \(g_{21}\) |
weight | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(4\omega_{1}\) | \(4\omega_{2}\) | \(3\omega_{1}+2\omega_{2}\) | \(3\omega_{1}+2\omega_{2}\) | \(6\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(4\omega_{1}\) | \(4\omega_{2}\) | \(3\omega_{1}+2\omega_{2}-14\psi\) | \(3\omega_{1}+2\omega_{2}+14\psi\) | \(6\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{2}} \) → (0, 4, 0) | \(\displaystyle V_{3\omega_{1}+2\omega_{2}-14\psi} \) → (3, 2, -14) | \(\displaystyle V_{3\omega_{1}+2\omega_{2}+14\psi} \) → (3, 2, 14) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) | \(3\omega_{1}+2\omega_{2}\) \(\omega_{1}+2\omega_{2}\) \(3\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(\omega_{1}\) \(3\omega_{1}-2\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(-\omega_{1}\) \(\omega_{1}-2\omega_{2}\) \(-3\omega_{1}\) \(-\omega_{1}-2\omega_{2}\) \(-3\omega_{1}-2\omega_{2}\) | \(3\omega_{1}+2\omega_{2}\) \(\omega_{1}+2\omega_{2}\) \(3\omega_{1}\) \(-\omega_{1}+2\omega_{2}\) \(\omega_{1}\) \(3\omega_{1}-2\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(-\omega_{1}\) \(\omega_{1}-2\omega_{2}\) \(-3\omega_{1}\) \(-\omega_{1}-2\omega_{2}\) \(-3\omega_{1}-2\omega_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) | \(3\omega_{1}+2\omega_{2}-14\psi\) \(\omega_{1}+2\omega_{2}-14\psi\) \(3\omega_{1}-14\psi\) \(-\omega_{1}+2\omega_{2}-14\psi\) \(\omega_{1}-14\psi\) \(3\omega_{1}-2\omega_{2}-14\psi\) \(-3\omega_{1}+2\omega_{2}-14\psi\) \(-\omega_{1}-14\psi\) \(\omega_{1}-2\omega_{2}-14\psi\) \(-3\omega_{1}-14\psi\) \(-\omega_{1}-2\omega_{2}-14\psi\) \(-3\omega_{1}-2\omega_{2}-14\psi\) | \(3\omega_{1}+2\omega_{2}+14\psi\) \(\omega_{1}+2\omega_{2}+14\psi\) \(3\omega_{1}+14\psi\) \(-\omega_{1}+2\omega_{2}+14\psi\) \(\omega_{1}+14\psi\) \(3\omega_{1}-2\omega_{2}+14\psi\) \(-3\omega_{1}+2\omega_{2}+14\psi\) \(-\omega_{1}+14\psi\) \(\omega_{1}-2\omega_{2}+14\psi\) \(-3\omega_{1}+14\psi\) \(-\omega_{1}-2\omega_{2}+14\psi\) \(-3\omega_{1}-2\omega_{2}+14\psi\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\) | \(\displaystyle M_{3\omega_{1}+2\omega_{2}-14\psi}\oplus M_{\omega_{1}+2\omega_{2}-14\psi}\oplus M_{3\omega_{1}-14\psi}\oplus M_{-\omega_{1}+2\omega_{2}-14\psi} \oplus M_{\omega_{1}-14\psi}\oplus M_{3\omega_{1}-2\omega_{2}-14\psi}\oplus M_{-3\omega_{1}+2\omega_{2}-14\psi}\oplus M_{-\omega_{1}-14\psi} \oplus M_{\omega_{1}-2\omega_{2}-14\psi}\oplus M_{-3\omega_{1}-14\psi}\oplus M_{-\omega_{1}-2\omega_{2}-14\psi}\oplus M_{-3\omega_{1}-2\omega_{2}-14\psi}\) | \(\displaystyle M_{3\omega_{1}+2\omega_{2}+14\psi}\oplus M_{\omega_{1}+2\omega_{2}+14\psi}\oplus M_{3\omega_{1}+14\psi}\oplus M_{-\omega_{1}+2\omega_{2}+14\psi} \oplus M_{\omega_{1}+14\psi}\oplus M_{3\omega_{1}-2\omega_{2}+14\psi}\oplus M_{-3\omega_{1}+2\omega_{2}+14\psi}\oplus M_{-\omega_{1}+14\psi} \oplus M_{\omega_{1}-2\omega_{2}+14\psi}\oplus M_{-3\omega_{1}+14\psi}\oplus M_{-\omega_{1}-2\omega_{2}+14\psi}\oplus M_{-3\omega_{1}-2\omega_{2}+14\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\) | \(\displaystyle M_{3\omega_{1}+2\omega_{2}-14\psi}\oplus M_{\omega_{1}+2\omega_{2}-14\psi}\oplus M_{3\omega_{1}-14\psi}\oplus M_{-\omega_{1}+2\omega_{2}-14\psi} \oplus M_{\omega_{1}-14\psi}\oplus M_{3\omega_{1}-2\omega_{2}-14\psi}\oplus M_{-3\omega_{1}+2\omega_{2}-14\psi}\oplus M_{-\omega_{1}-14\psi} \oplus M_{\omega_{1}-2\omega_{2}-14\psi}\oplus M_{-3\omega_{1}-14\psi}\oplus M_{-\omega_{1}-2\omega_{2}-14\psi}\oplus M_{-3\omega_{1}-2\omega_{2}-14\psi}\) | \(\displaystyle M_{3\omega_{1}+2\omega_{2}+14\psi}\oplus M_{\omega_{1}+2\omega_{2}+14\psi}\oplus M_{3\omega_{1}+14\psi}\oplus M_{-\omega_{1}+2\omega_{2}+14\psi} \oplus M_{\omega_{1}+14\psi}\oplus M_{3\omega_{1}-2\omega_{2}+14\psi}\oplus M_{-3\omega_{1}+2\omega_{2}+14\psi}\oplus M_{-\omega_{1}+14\psi} \oplus M_{\omega_{1}-2\omega_{2}+14\psi}\oplus M_{-3\omega_{1}+14\psi}\oplus M_{-\omega_{1}-2\omega_{2}+14\psi}\oplus M_{-3\omega_{1}-2\omega_{2}+14\psi}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) |